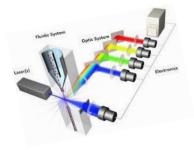


The dark side of flow cytometry

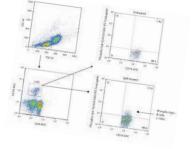
how to avoid mistakes

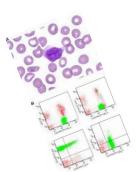

Andreas Spittler

Core Facility Flow Cytometry & Surgical Research Laboratories

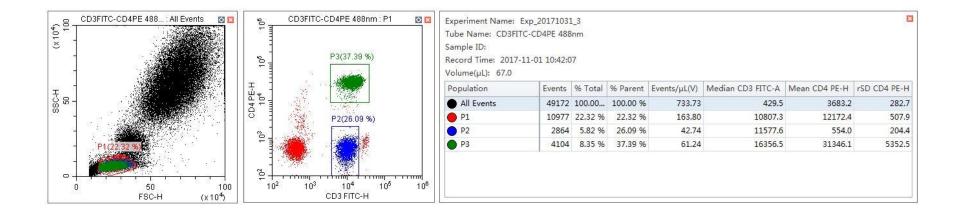
IFCC Flow Cytometry Workshop, Astana, Kazakhstan, 21.9.2018

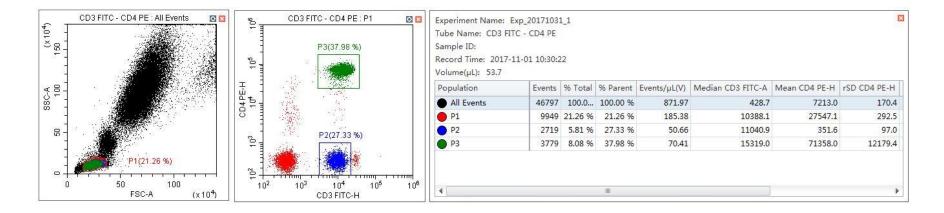
Flow Cytometry – Pitfalls & Troubleshooting




Pre-analytic

Analytic


1. Pre-analytics


Flow cytometer strategies

- Which instrument should I use?
- Which instrument should I buy?
- How many colours how many lasers?

... and why ??? ...

... is there a difference ???

Pre-analytical human errors

Planning is everything !!!!

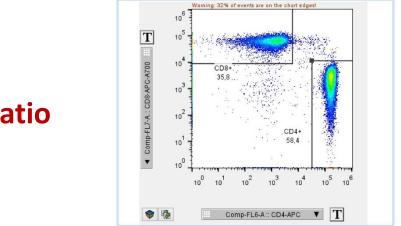
- Plan your steps
- Pipetting errors
- Multi-center studies

antibody-precoated tubes

Optimal instrument-setup (QC & QA)

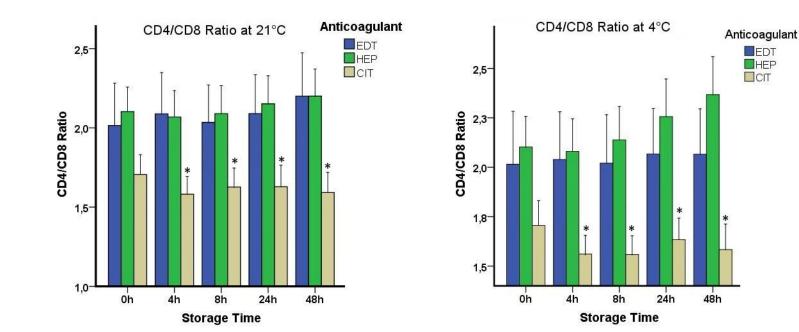
- <u>QC-beads</u>: laser delay, target channel (delta PMTV delta GAIN), %CV, area scaling, window extension
- Assay-specific settings (optimized PMT voltages; rSD_{neg.cells} > 2,5xSD_{EN}) – Goal: highest sensitivity, reproducibility
- Target voltages for longitudinal studies and interlaboratory studies

Sample preparation


Single cell suspension! (10⁶-10⁸ cells/ml)

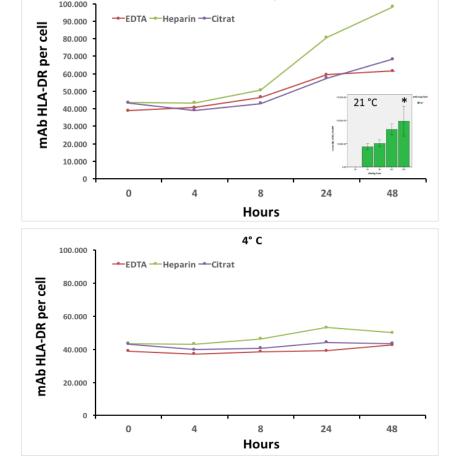
- \circ easy for suspension cells
- adherent cells, tissue: gentle but efficient (tissue) dissociation protocol mechanical disaggregation (chopping, grinding, passing through a needle) and/or enzymatic digestion – trypsin/accutase; collagenase, pepsin - critical factors: pH, temperature, cofactors (Ca²⁺,...)
- Whole blood lysis: fixing/non-fixing (ammonium chloride)
- Count cells (to ensure there are enough cells from the beginning and to check the preparation protocol)

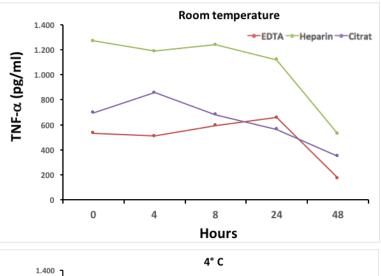
Sample preparation

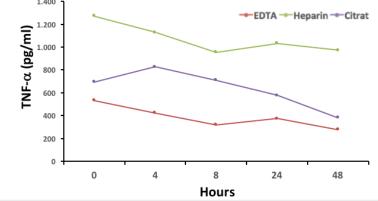

- Intracellular staining: specific protocols for fixation/permeabilization (formaldehyde, alcohol, detergent)
- Check correct centrifugation speed (rpm vs. xg)
- Fixation: cells may not pellet well
- Filter samples (70-200µm)

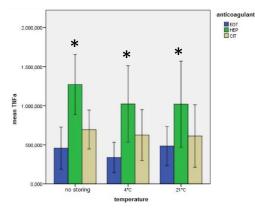
Different anticoagulants give different results

EDT HEP


CD4:CD8 ratio




Anticoagulants, storage time and temperature


Functional assays and activation marker

Room temperature

Choice of fluorochromes

- Use bright dyes for dim markers/weak dyes for strongly expressed markers
- Minimize spillover, esp. for co-expressed markers
- Use "silent" dye for strong markers (no/little spillover into other channels)
- Use "untouched" channel for dim markers (no/little spillover from other channels)
- Data spread = loss of sensitivity in other channels!

Controls

Compensation controls

- Unstained control (background fluorescence)
- Isotype control: only for detection of nonspecific binding, not for determination of positivity!
- Negative control (no expression, untreated, etc.)
- Positive control
- FMO (Fluorescence-minus one) control: to determine threshold for positivity
- SWOFF control (switch-off fluorescence): to reveal hiding of dim markers by data spreading

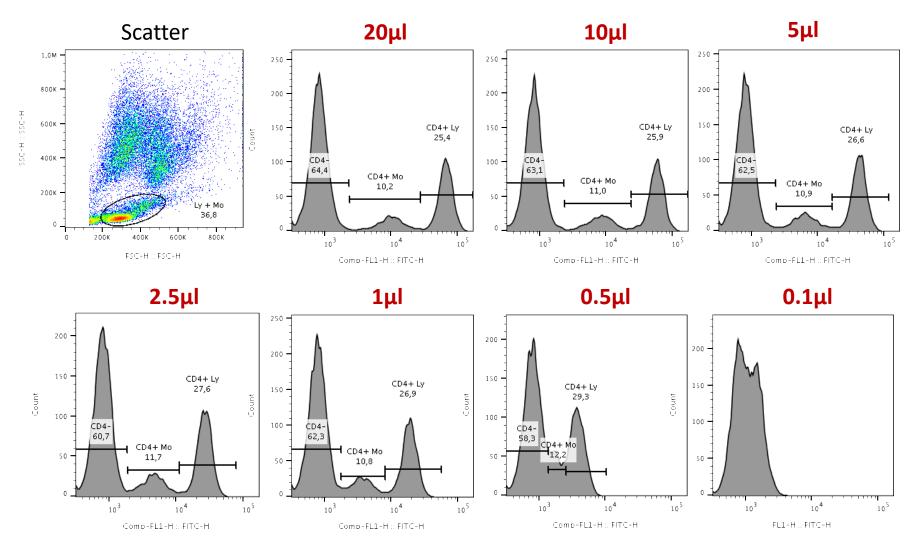
Titration

Separation titer vs. Saturation titer
Same conditions as in final assay
Same cell number as in final assay

Stain index:

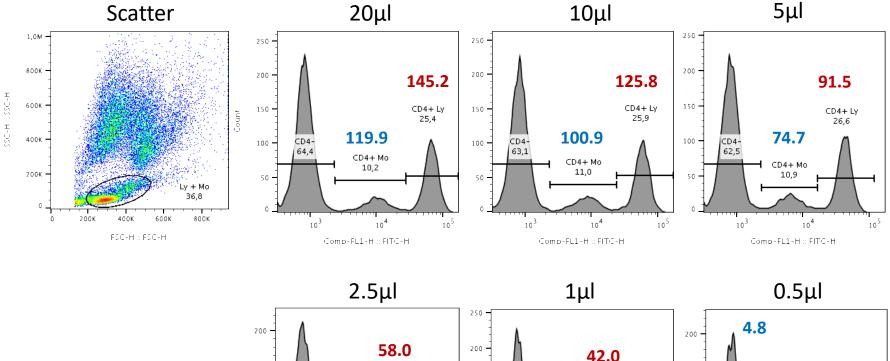
[MFI (pos. population) – MFI (neg. population)] / [2xSD (neg. population)]

O

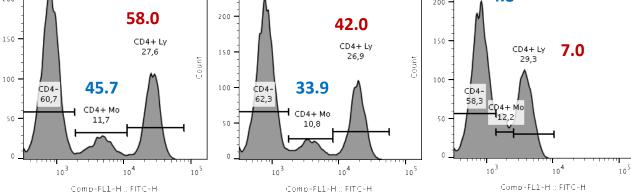

400

800

Antibody titration


Save money, avoid unspecific staining, critical if comparing MFIs

CD4 FITC – recommended concentration $20\mu I$



Stain index Monos - T-cells

[MFI (pos. population) – MFI (neg. population)] / [2xSD (neg. population)]

Count

Table of stain index

Reagents	Clone	Fluorochrome	Stain Index
	- RPA-T4 -	Brilliant Violet 421	561
		Pacific Blue™	24
CD4		BD Horizon V450	29
		PE	142
	VIT4	VioBlue®	31
	RPA-T8	Brilliant Violet 421	782
CD8		Pacific Blue™	29
		PE	198
CDFC	Brilliant Violet 4		45
CD56	B159 -	PE	18
CD127	511 70 MO4	Brilliant Violet 421	55
	hlL-7R-M21 -	PE	14

	Fluorochrome					
	Very Bright	Bright	Moderate	Dim		
Ultraviolet (355 nm)		BD Horizon™ BUV661 BD Horizon™ BUV737	BD Horizon™ BUV395 BD Horizon™ BUV496	BD Horizon™ BUV805		
Violet (405 nm)	BD Horizon™ BV421 BD Horizon™ BV650 BD Horizon™ BV711	BD Horizon™ BV605 BD Horizon™ BV786	BD Horizon™ BV510	BD Horizon™ V450 BD Horizon™ V500		
Blue (488 nm)	BD Horizon™ BB515 BD Horizon™ PE-CF594 PE-Cy™5	PE PE-Cy™7	FITC Alexa Fluor® 488 PerCP-Cy™5.5	PerCP		
Yellow/Green (561 nm)	PE BD Horizon PE-CF594 PE-Cy5 PE-Cy7					
Red (640 nm)		APC Alexa Fluor® 647 BD Horizon™ APC-R700		Alexa Fluor® 700 APC-H7 APC-Cy7		

Laser

Fluorochrome	Laser	Filter	РМТ	Stain Index	Gallios
PE	blue	575/30 nm band pass	FL-2	617	
PE-Cy7	blue	755 nm long pass	FL-5	532	
Brilliant Violet-421	violet	450/40 nm band pass	FL-9	476	Brilliant Visitat
APC	red	660/20 band pass	FL-6	440	
Alexa Fluor 647	red	660/20 band pass	FL-6	307	100 30 0 0 0 0 0 0 0 0 0 0 0 0 0
APC-Cy7	red	755 nm long pass	FL-8	196	
APC eFluor-780	red	755 nm long pass	FL-8	174	100 - 30 100 - 50 - 5
Alexa Fluor 488	blue	525/40 nm band pass	FL-1	133	
PerCP-Cy5.5	blue	675/20 nm band pass	FL-4	118	BarCP-CyS.5 BarCP
FITC	blue	525/40 nm band pass	FL-1	97	300 - PITC 100 - 31 100 - 0
eFluor-650NC	red	660/20 band pass	FL-6	71	ата со
BD Horizon-V450	violet	450/40 nm band pass	FL-9	61	100- 通 100- の
Pacific Blue	violet	450/40 nm band pass	FL-9	44	Pace Bits and a second
PerCP	blue	675/20 nm band pass	FL-4	32	
eFluor-605NC	blue	620/30 nm band pass	FL-3	27	лю- щ ю- ал о о то то со то с

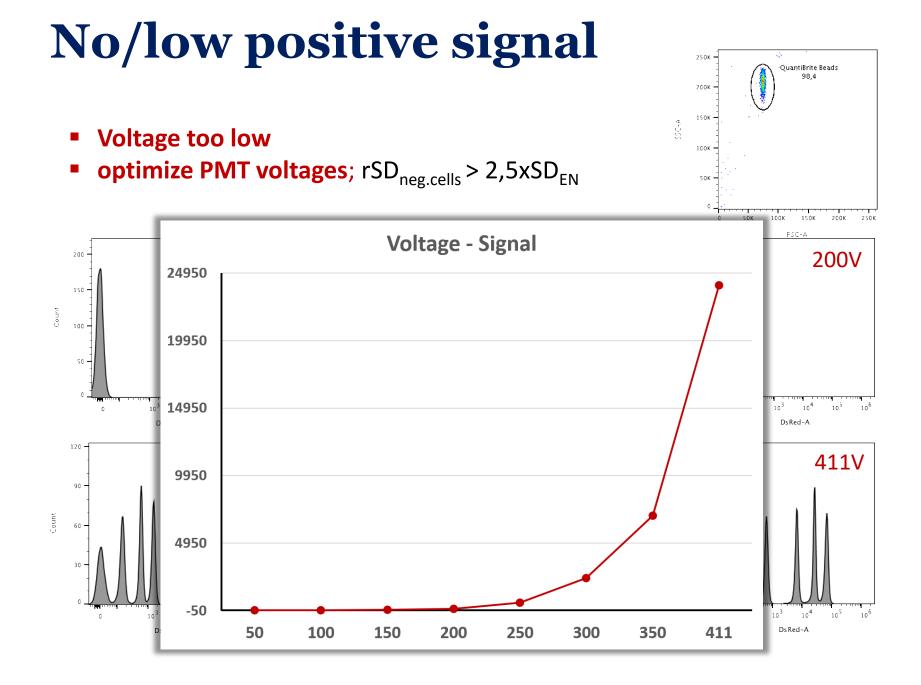
www.dartmouth.edu

Staining procedure

- On ice (or 4°C) or at room temperature? Mostly room temperature, on ice when measuring activation markers
- Correct volume antibody concentration
- Intracellular staining: follow instruction in datasheet, use isotype controls to assess background (excess antibody may not be washed out of cells completely!)
- Blocking antibodies or AB serum
- Protect from light

Cell aggregation/clumping

- Buffer (PBS) w/o Mg, Ca
- Include BSA/FBS, EDTA in buffer
- DNase I
- Filter sample (40µm)
- Use hypotonic lysis buffer (0.1% sodium citrate, Triton X-100) for DNA-staining

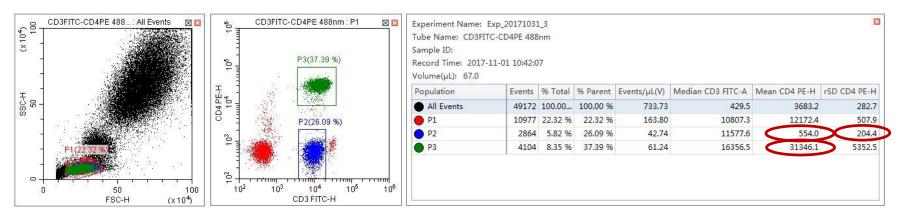


No/very few events

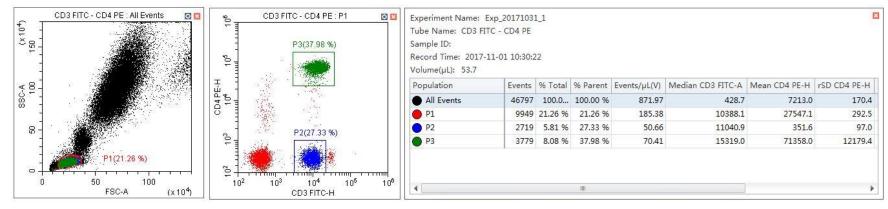
- System clog or pressure leak (see manual for instrumentspecific measures), tube possibly cracked
- Threshold (FSC) too high, voltage too low
- Use log scale for small particles (linear scale for DNA analysis)

No/low positive signal

- Fluorescence-threshold set too high (dim-positives are lost)
- High spill-over obscures low signal
- Not enough antibody antibody properly titrated?
- Antibody gone bad (expired, not stored properly light! Do not freeze!)
- Antigen or fluorochrome sensitive to fixation protocol
- Receptor internalized (e.g. upon activation) or sensitive to trypsinization – stain at 4°C
- Wrong secondary antibody use proper species


Signal goes off-scale

- Lower voltage
- (Re) titrate antibody
- Use less antibody
- Add non-conjugated antibody
- Use dimmer fluorochrome
- 488nm 561nm laser (PE and PE conjugates are much brighter)

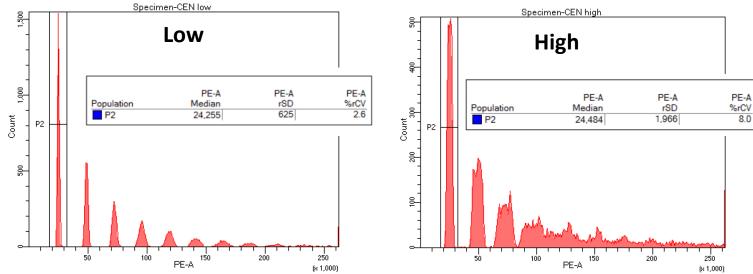

488nm – 561nm laser (PE and PE conjugates are much brighter)

[MFI (pos. population) – MFI (neg. population)] / [2 x rSD (neg. population)]

7 6	3
	-

366.0

Compensation

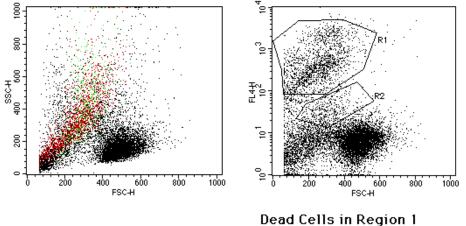

- Use single-stained controls (cells or antibody capture beads) with <u>same</u> fluorochrome as used in the assay
- Unstained control must have same autofluorescence as single-stained controls (don't mix!)
- Single-stained controls must have at least same fluorescence intensity as strongest signal in assay (linearity!)
- Data spread = loss of sensitivity => no compensation = best sensitivity
- More lasers are better reduced spillover

Compensation looks wrong over/undercompensated

- Mixed positive and negative controls (must have same background signal/autofluorescence!)
- Positive control has lower signal intensity as population for that colour – use (antibody capture) beads for compensation
- Tandem dye must compensate each new lot!
- BV dyes require special staining buffer (company recommendation)

Acquisition

Slow (optimal resolution); esp. for DNA analysis



 <u>Time parameter (to detect instrument changes, e.g.</u> pressure/laser, during acquisition)

Acquisition

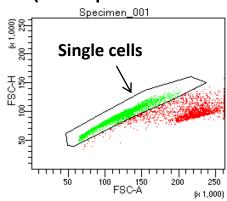
Position of live – dead – apoptotic cells

Dead Cells in Region 1 Apoptotic cells in Region 2

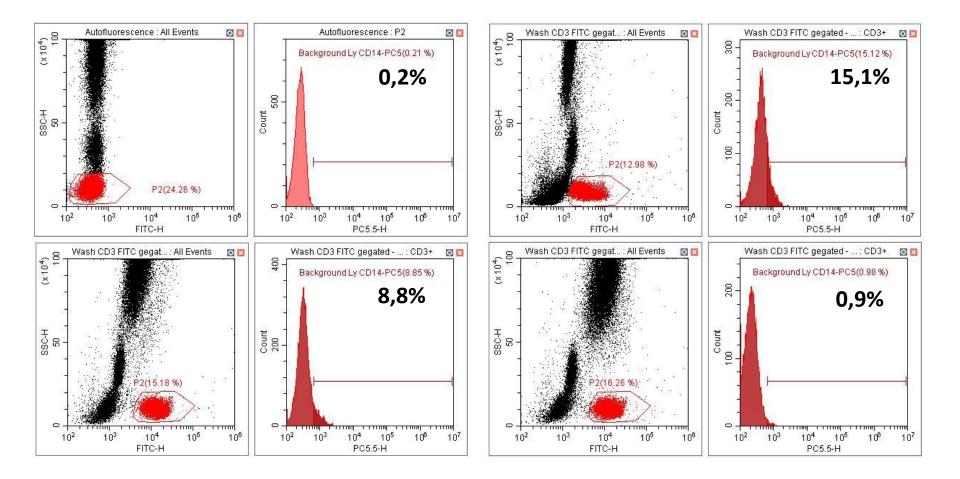
http://www.cyto.purdue.edu/cdroms/cyto5/tech/icrfapop.htm#SCAT

CD34+ and dead cells

Loss/shifting of signal & unusual compensation

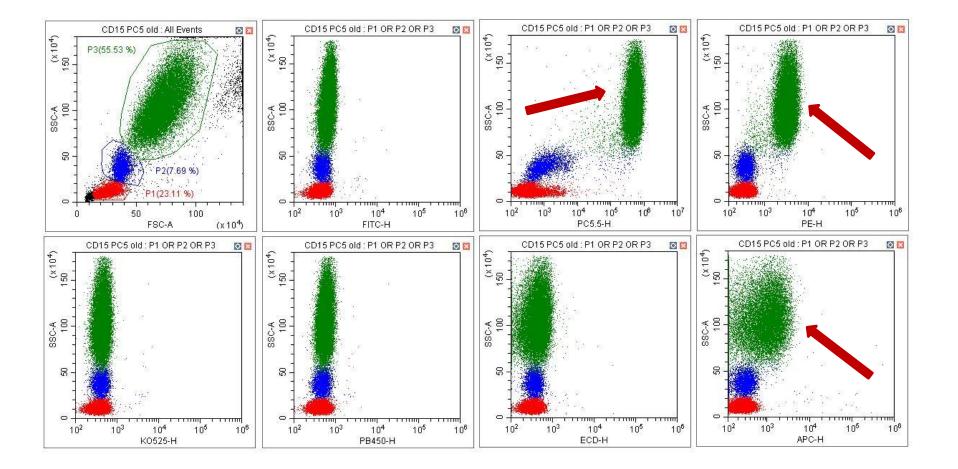

Degradation of tandem dyes

- Sensitive to light (and temperature)
- Date of expiry
- Sensitive to fixation
- Each lot possibly requires new compensation
- Controls frequently

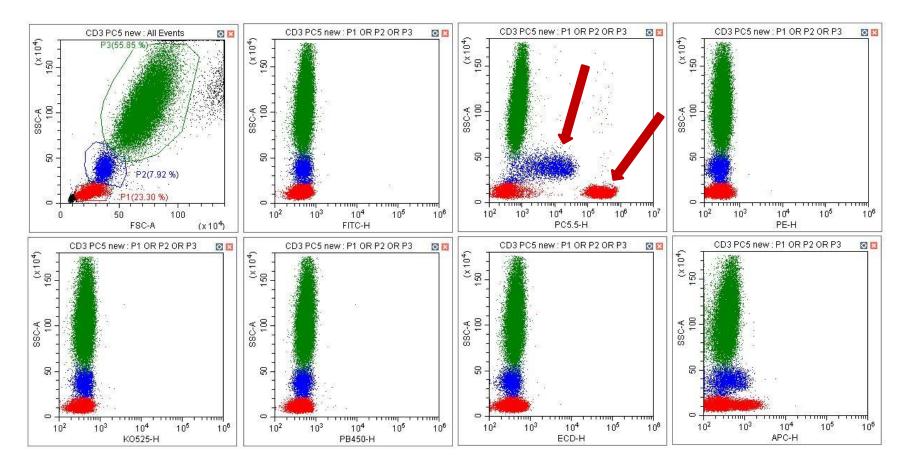

System fluctuations (laser, sheath pressure) – always record time parameter

High background (autofluorescence)/ non-specific staining - False-positives

- Antibody properly titrated? Isotype controls may be used to indicate non-specific binding.
- Gate out AF-cells (use dump channel)
- Dead cells, cell debris (high autofluorescence, bind antibodies non-specifically) - use live/dead dye, DNase I
- No doublet discrimination exclude doublets (Dot plot: FSC-H vs. FSC-A)
- Wash cells 3 times after staining

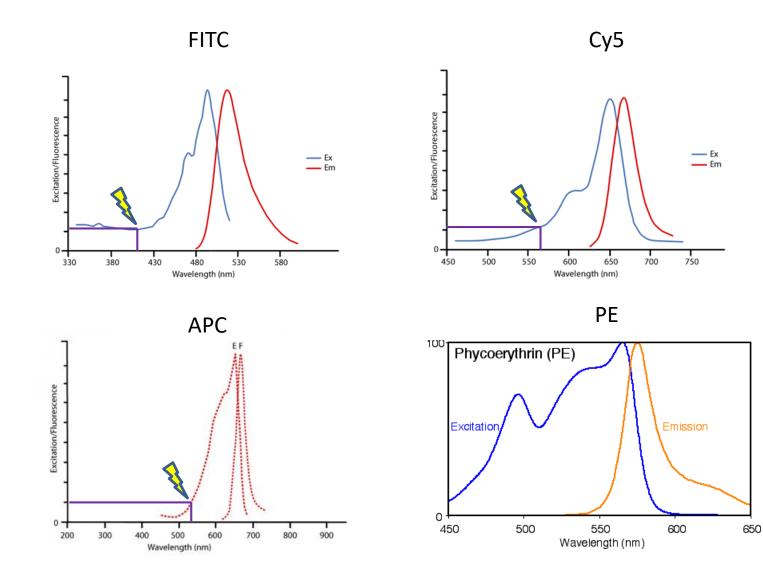


Wash your cells


Whole blood was stained with an anti-CD3 FITC antibody and an anti-CD14 antibody. After incubation for 30 minutes at T in the dark, red blood cells were lysed and sample was washed several times. CD3+ cells were gated and non-specific binding of CD14 on CD3+ cells was detected

"Old" PE-Cy5 conjugate

High background (autofluorescence) non-specific staining - False-positives


Blocking (Fc receptors) avoid Cyanine dyes (e.g. PE-Cy5, PE-Cy5.5) – they stain myeloid cells (monocytes)

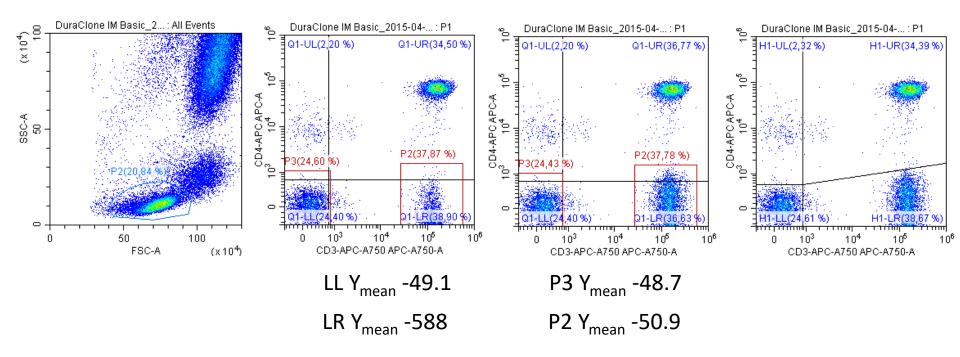
High background (autofluorescence)/ non-specific staining - False-positives

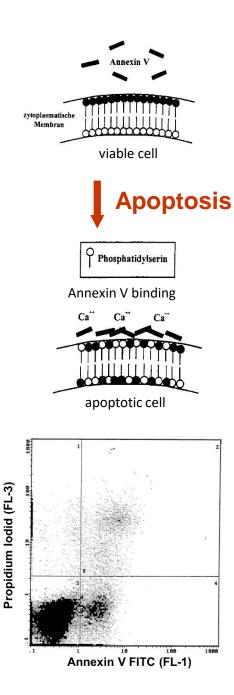
- Washing steps between samples (PI: hypochlorite, acquire unstained cells)
- Cells after culture e.g. monocytes (day 1) monocyte derived macrophages are much bigger (day 7) – higher autofluorescence
- Autofluorescence depends on the laser and/or the wavelength measured

Some (possibly all) dyes are excited from multiple lasers

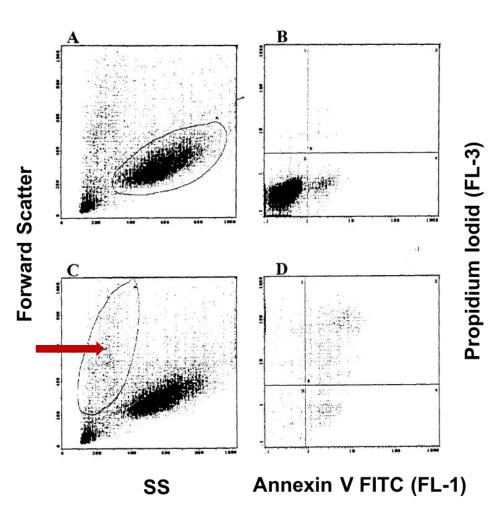
3. Post-analysis

– Morphology of the cells


- Live dead apoptotic
- $\circ~$ Cells after culture


 Different settings for different cell types due to different autofluorescences? (lymphos, monos, granulos)

- Correct gating strategy
- Gating strategy regarding apoptosis


Gating Strategy

- Quadrants vs hinged regions
- Wrong vs. correct compensation

Apoptotic cells change morphology

Shapiro's Zeroth Law: There is no Magic

The cytometers and reagents in your experiments use the principles of physics and chemistry to produce your results. Therefore, there is no magic involved in your experiments.